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     Dielectric absorption in capacitors causes “memory” or voltage recovery, it causes loss and thus increases D, 

the dissipation factor, and it causes a decrease in capacitance with frequency.   

     No capacitor is ideal except one using a vacuum, all others exhibit some loss in the dielectric used when an ac 

voltage in applied. At low frequencies, one can think of a dielectric material being a complex network of 

capacitances and resistances, the resistances being “leakage” resistances between the capacitances caused by 

the nature of the dielectric itself or by impurities in the material used. Any RC network, no matter how big, can 

be characterized by one of four “canonic” or generalized networks. One of these is an infinite number series 

resistances and capacitances all connected in parallel as in figure 1 (see reference 1). The separate resistor 

represents the actual leakage resistance. (The other canonic networks are a series connection of many parallel 

resistances and capacitances and two RC ladder networks, one with resistors in series and capacitors to a 

common point, the  other with the resistance and capacitances interchanged.)  

 Let is consider the simplest case that exhibits all the effects of dielectric absorption, that of figure 2 where C2 

is much smaller than C1. The effective capacitance of this network is C1 + C2/[1 + (wRC2)
2
]. One can easily see  

that the capacitance decreases with frequency, from C1 + C2  down to just C1  at high frequency. More RC 

branches would add more terms like the second one, and enough such terms with different time constants 

could make the C vs frequency curve of most any shape as long as it decreases monotonically with frequency. 

   The D of this network can be written as   D = ( C2/C1) wRC2/[1 + C2/C1 + (wRC2)
2
]. One can see that this is a  

humped-back curve of D vs frequency with a peak of about (C2/C1)/2 when wRC2 ≈ 1.  Other added RC branches 

can produce a D vs frequency curve of any shape as long as D changes slowly. It can be shown that if D is 

constant, the change in capacitance with frequency is (C2  - C1)/C = -D(2/π)ln(f2/f1)  where f2  is the higher 

frequency and ln is the natural logarithm , see references 2 and 3. 

       Now imagine a voltage V applied to the circuit of figure 2 and applied long enough so that C2 is fully  

charged. Then imagine the network short-circuited instantly discharging C1 only. Now, if the voltage across the 

network is measured, it will slowly increase until the voltages across the two capacitors are equal and the 

voltage value will be VC2/(C1 + C2). This is the voltage “recovered”, the voltage recovery is the percent of that 

recovered  or 100%C2/(C1  + C2).  This sometimes specified, but always after a specified time.  The time constant 

in this case is RC1C2/(C1 + C2). An actual capacitor, represented by many RC branches as in figure 1, would have 

some very long time constants, hours even days. This makes the measurement of the actual leakage resistance 

difficult. 

  An interesting experiment is to charge a previously discharged capacitor for a certain time, say an hour.  

Then short it quickly and then measure the current. The current will decrease slowly and after an hour will drop 

of quickly. The RC branches that got fully charged will get fully discharged, some that were only partially charged 

will be only partially discharged and will still be providing a very small current after an hour.   

       Capacitors made up of layers of two different dielectrics usually exhibit memory as would two capacitors 

with different dielectrics connected in series. Consider the circuit of figure 3 which is equivalent to that of figure 

1 (but all the element values are different). This is the simplest example of the second canonic form mentioned 

above. Here C decreases from Ca at low frequency to CaCb/(Ca + Cb) at high frequencies and D = (Ca/Cb)wRCb/[1 + 

wR
2
Cb(Ca + Cb) which has a bump of about (Ca/Cb)/2 when (wRCb)

2
 is approximately equal to 1  (Cb >> Ca). The 

percent voltage recovery is 100%Ca/(Ca + Cb). It’s harder to see how the voltage recovery occurs in the circuit, 

but it does. This figure is a good representation of a mica capacitor which are layered and the mica layers can 

have different losses. The term “interfacial polarization” is sometimes used as the cause of memory, it would 

seem to apply to this circuit where charge can be trapped between layers. 

  Since dielectric absorption causes both D and memory, one is a good measure of the other.  Air capacitors 
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capacitors have the lowest D and memory then, more-or-less in order, are those made of Teflon®, polystyrene, 

polypropylene, polycarbonate, mica,  Mylar, paper and, the worst, electrolytic capacitors, tantalum and 

aluminum. Ceramic capacitors vary widely depending on their composition, some can be very good. 

       It doesn’t take much imagination to see how a capacitor that exhibits memory would cause errors when 

used in a measurement circuit such a integrator. It would hold charges left over from previous measurements. 

             

  

Relationships:     

   Ca = C1 + C2  ;       Cb = (C1/C2)(C1+ C2)    ;     Cb/Ca = C1/C2   ;    Time Constant = RC1C2/(C1+C2) 

 

                C1  = CaCb (Ca + Cb)        ;             C2 = Ca
2
/(Ca + Cb)     ;            Time Constant = RCb   

                              

                R1 =   Ra(CA + Cb)/Ca
2     ;       Ra  = R1C2

2/(C1 + C2)2      ;      R1C1C2 = RbCaCb 

 

              (R1 is the resistance in figure 2, Ra that in figure 3. Note R1 is somewhat greater than Ra.) 
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